Chapter 12: Heat in Chemical Reactions

 OS
12-1 Chemical Reactions that Involve

Heat

as Chemical reactions involve breaking and/or making bonds and rearranging atoms.
α_{B} Breaking bonds requires energy and making bonds releases energy.
c_{2} Heat- the energy that is transferred from one object to another due to a difference in temperature
cs Temperature - average kinetic energy of a substance

Thermochemistry - study of the changes in heat in a chemical reaction.
$\propto \rightarrow$ Exothermic reactions - reactions that RELEASE heat
~EEndothermic reactions - reactions that ABSORB heat

๙Surroundings vs. system

Exothermic reactions:

$\alpha_{3} B$ urning of a camp stove (propane $\mathrm{C}_{3} \mathrm{H}_{8}$)

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}+2043 \mathrm{~kJ}
$$

c 22043 kJ of heat are released when 1 mole of $\mathrm{C}_{3} \mathrm{H}_{8}$ is burned.
∞ cone energy released during forming new bonds is greater than the energy required to break the old bonds...end result is RELEASE of energy...EXOTHERMIC

Endothermic Reactions:

α_{3} A process in fuel industry called water gas, when steam $\left(\mathrm{H}_{2} \mathrm{O}\right)$ is passed over hot coals (C)

$$
\mathrm{C}+\mathrm{H}_{2} \mathrm{O}+113 \mathrm{KJ} \rightarrow \mathrm{CO}+\mathrm{H}_{2}
$$

$\propto \rightarrow$ The energy released as new bonds are formed in the products is less than the energy required to break the bonds in the reactants. This energy must be provided for the reaction to take place and is stored in the bonds of the products...end result is ABSORBING of energy...ENDOTHERMIC

12-2 Heat and Enthalpy Changes

 C3csEnthalpy - the heat absorbed or gained during a chemical reaction.
arThe difference between energy and enthalpy is very subtle. When the pressure remains constant, the energy absorbed or released during a chemical reaction is equal to the enthalpy change for the reaction.

Interpreting data

© P Temperature change ($\Delta \mathrm{T}$)

$$
\Delta \mathrm{T}=\mathrm{T} \text { final }-\mathrm{T} \text { initial }
$$

© Enthalpy change $\Delta \mathrm{H}$
$\Delta \mathrm{H}=\mathrm{H}$ products - H reactants
(not used to calculate though)
Sign $\Delta \mathbf{H}$
Process
Heat
$+$
Endo
Absorbed
Exo
Released

Sample problem...

Bombadier beetle

CR How much heat will be released if 1.0 g of $\mathrm{H}_{2} \mathrm{O}_{2}$ decomposes in a beetle to produce the steam spray (see picture above)?

$$
\underline{2 \mathrm{H}_{2} \underline{\mathrm{O}}_{2}} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \quad \underline{\mathrm{H}}=-190 \mathrm{KJ}
$$

...hint - think stoich with heat $\Delta \mathrm{H}$ as part of the ratio

12-3 Hess's Law

co Hess's Law- if a series of reactions are added together, the enthalpy change for the net reaction will be the sum of the enthalpy changes for the individual steps.
$\propto<$ Allows you to find enthalpy changes of reactions that cannot be measured directly

Consider the haze in a large city

$$
\mathrm{N}_{2}+2 \mathrm{O}_{2} \rightarrow \underline{\mathrm{NO}}_{\underline{2}} \text { (netreaction) }
$$

$\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}$
$2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$

$$
\Delta \mathrm{H}=+181 \mathrm{~kJ}(\text { (equation } 1)
$$

$\Delta \mathrm{H}_{2}=-113 \mathrm{~kJ}$ (equation 2)

$$
\mathrm{N}_{2}+2 \mathrm{O}_{2}+2 \mathrm{NQ} \rightarrow 2 \mathrm{NQ}+2 \mathrm{NO}_{2} \quad \text { (netreaction) }
$$

$\Delta \mathrm{H}$ net $=\Delta \mathrm{H}$ equation $1+\Delta \mathrm{H}$ equation 2
$\Delta \mathrm{H}=181+-113=68 \mathrm{~kJ}$

Rules for applying Hess's Law
calf you multiply or divide the coefficients by a number do the same to $\Delta \mathrm{H}$.
crif the equation is reversed, so is the sign of $\Delta \mathrm{H}$.

Let's try one...

$\propto \&$ Calculate ΔH for the reaction that produces $\mathrm{SO}_{2} \ldots$

$$
\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}
$$

$\begin{array}{ll}\text { c } 2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3} & \Delta \mathrm{H}=-196 \mathrm{KJ} \text { (equation 1) } \\ \text { c } 2 \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3} & \Delta \mathrm{H}=-790 \mathrm{KJ} \text { (equation 2) }\end{array}$

cos

$\infty<1^{\text {st }}$ look at the products and reactants in the net equation and see if they are on the same side in one of the numbered equations...if not FLIP the equations to get them on the correct side (don't forget that the $\Delta \mathrm{H}$ must change accordingly)
$\cos 2 \mathrm{SO}_{3} \rightarrow 2 \mathrm{SO}_{2}+\mathrm{O}_{2} \quad \Delta \mathrm{H}=196 \mathrm{~kJ}$ (equation 1)
© $2^{\text {nd }}$ look at the coefficients for the net equation and see if they will match the numbered equations...if not X or / all by the correct number to get the coefficients you need (don't forget that the $\Delta \mathrm{H}$ must change accordingly)
$\cos \mathrm{SO}_{3} \rightarrow \mathrm{SO}_{2}+1 / 2 \mathrm{O}_{2}$
© $\mathrm{S}+3 / 2 \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}$

$$
\begin{aligned}
& \Delta \mathrm{H}=98 \mathrm{~kJ}(\text { (equation } 1) \\
& \Delta \mathrm{H}=-395 \mathrm{~kJ}(\text { (equation } 2)
\end{aligned}
$$

$$
\begin{array}{cc}
\cos \mathrm{SO}_{3} \rightarrow \mathrm{SO}_{2}+1 / 2 \mathrm{O}_{2} & \Delta \mathrm{H}=98 \mathrm{~kJ} \text { (equation 1) } \\
\cos \frac{\mathrm{S}+3 / 2 \mathrm{O}_{2}}{\mathrm{~S}-\mathrm{SO}_{3}} \underset{\mathrm{SO}}{3}+\mathrm{S}+3 / 2 \mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}+1 / 2 \mathrm{Q}_{2}+\mathrm{SQ}_{\mathrm{k}} \\
\mathrm{~S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2} \text { (net reaction) } \\
\Delta \mathrm{H}=98 \mathrm{~kJ}+-395 \mathrm{~kJ} \\
\Delta \mathrm{H}=-297 \mathrm{~kJ}
\end{array}
$$

You try it now...

a WS 12-3 PP try \# 2
\cos Answer: -123 kJ
œ HW... do 2 - 4

12-4 Calorimetry

cas Calorimetry- the indirect study of heat flow and heat measurement
cas Heat capacity - the amount of heat needed to raise the temperature of the object by 1 Celsius degree. cs For example, the heat capacity of a cup of water at 18° C is the number of joules needed to make it 19. \leftrightarrow Depends on mass and composition
C_{2} Specific heat capacity (c) - the heat capacity of 1 gram of a substance

$$
\mathrm{c}_{\text {water }}=4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}
$$

© To raise the temp of 1 gram of water $1^{\circ} \mathrm{C}$ you need to add 4.184 J of energy

Calorimetry Equations

 OS$$
\mathrm{Q}=\mathrm{mc} \Delta \mathrm{~T}
$$

$$
Q_{\text {surroundings }}=-Q_{\text {system }}
$$

$\operatorname{CB} Q=$ quantity of energy transferred (heat)
$\mathfrak{C} \mathrm{m}=$ mass of substance that gains/loses energy
$\infty \Delta T=$ change in temperature of substance that gains/loses energy
CP C $=$ specific heat capacity of substance that gains/loses energy

Let's try one.

cos
© Determine $\Delta \mathrm{H}$ for the addition of NaOH to water when the calorimeter is filled with 75.0 g water. The initial temp is $19.8^{\circ} \mathrm{C}$. A 2.0 g sample of solid NaOH is added and the temp increases to $26.7^{\circ} \mathrm{C}$.
os 4 steps:
$\propto<$ Calculate $Q_{\text {water (surroundings) }}$
$\propto<$ Determine $Q_{\text {system }}$
\propto Convert g solid added to moles
$\propto \Delta H=Q_{\text {system }} /$ moles solid added

The work...

cos Step 1:
$Q_{\text {surroundings }}=\operatorname{mc\Delta T}$
$Q_{\text {surroundings }}=(75.0 \mathrm{~g})\left(4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)\left(26.7-19.8^{\circ} \mathrm{C}\right)$
$Q_{\text {surroundings }}=+2165 \mathrm{~J}$
\propto Step 2:
$Q_{\text {surroundings }}=-Q_{\text {system }} \ldots$ so $Q_{\text {system }}=-2165 \mathrm{~J}$
\propto Step 3:
$2.0 \mathrm{~g} \mathrm{NaOH} \times 1 \mathrm{~mol} \mathrm{NaOH}=0.050 \mathrm{~mol} \mathrm{NaOH}$ 40.0 g NaOH
$\propto \Delta \mathrm{H}=\frac{-2165 \mathrm{~J}}{0.050 \text { mole } \mathrm{NaOH}}=-43,304 \mathrm{~J}$
$\mathrm{C} B$ When a 4.25 g sample of solid $\mathrm{NH}_{4} \mathrm{OH}$ dissolves in 60.0 g of water, the temperature drops from $21.0^{\circ} \mathrm{C}$ to $16.9^{\circ} \mathrm{C}$ solve $\Delta \mathrm{H}$.

cos

$\propto \&$ 1st calculate $Q_{\text {surroundings }} \quad Q_{\text {surroundings }}=m c \Delta T$
$Q_{\text {surroundings }}=(60.0 \mathrm{~g})\left(4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)\left(16.9^{\circ} \mathrm{C}-21.0^{\circ} \mathrm{C}\right)$
$Q_{\text {surroundings }}=-1029 \mathrm{~J}$
$\omega 22^{\text {nd }} Q_{\text {system }}=-Q_{\text {surroundings }}=+1029 \mathrm{~J}$
$\mathrm{Cl}_{3} 3^{\text {rd }} 4.25 \mathrm{~g} \mathrm{NH} 44 \mathrm{OH} \times 1$ mole NH $44 \mathrm{OH}=0.121 \mathrm{mNH}_{4} \mathrm{OH}$ $35 \mathrm{~g} \mathrm{NH}_{4} \mathrm{OH}$
$\mathrm{c}_{8} 4^{\text {th }} \Delta \mathrm{H}=\frac{1029 \mathrm{~J}}{0.121 \mathrm{mNH}_{4} \mathrm{OH}}=+8504 \mathrm{~J}$

Calculating c...(specific heat capacity)

cs We can use $\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$ to solve for other variables in the equation...specifically c

$$
\mathrm{c}=\frac{\mathrm{Q}}{\mathrm{~m} \Delta \mathrm{~T}}
$$

\sim_{B} Ex. What is the specific heat of a piece of silver if 30.8 g sample increases $11.2^{\circ} \mathrm{C}$ when 81 J of heat are added?

$$
\mathrm{C}=\frac{81 \mathrm{~J}}{(30.8 \mathrm{~g})\left(11.2^{\circ} \mathrm{C}\right)}=0.23 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}
$$

You try one now...

œ WS 12-4 PP WS do number 2
cr Answer: $0.90 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$

